
NASA Technical Memorandum 110241

DeMAID/GA USER'S GUIDE

Design Manager's Aid for Intelligent
Decomposition with a Genetic Algorithm

James L. Rogers

Langley Research Center, Hampton, Virginia

April 1996

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

TABLE OF CONTENTS

=

2.

o

o

Introduction ... 3

Background ... 4
2.1 Program Function Overview 4

2.1.1 File Structure .. 4

2.1.2 Program Execution 5
2.1.3 Computer Differences 5

2.2 Design Structure Matrix .. 6
2.3 The Knowledge Base .. 8

2.3.1 Facts ... 8
2.3.2 Rules .. 8

2.3.3 Inference Engine 9
Input Data ... 10

3.1 Required Input .. 10
3.1.1 Title .. 10

3.1.2 Maximum number 10
3.1.3 Module .. 10

3.2 Optional Input ... 12
3.2.1 Cost ... 12

3.2.2 Coupling strength 12
3.2.3 Override .. 12

3.2.4 Output breakdown 13
3.2.5 Requires .. 13

3.2.6 Sensitivity data 14
Program Functions .. 15

4.1 Rle Menu .. 15
4.1.1 Save Facts ... 15

4.1.2 Print .. 15
4.1.3 Quit .. 15

4.2 Plan Menu ... 16
4.2.1 First Pass ... 17

4.2.2 Preplan ... 19
4.2.3 Sensitivity .. 20

4.3 Schedule Menu ... 21
4.3.1 I/O Schedule .. 22

4.3.2 Parallel Schedule 24

4.3.3 Skip Schedule 24

°

4.8

Sample Problems .. 48

5.1 "conceptual_design" Problem 48
5.1.1 Module Input .. .49

5.1.2 Coupling Strength Data 50
5.2 "test" Problem ... 51

5.2.1 Module Input ... 51
References ... 52

4.4 DSM Menu .. 25

4.4.1 Display DSM .. 26
4.4.2 Labels & Titles 26

4.4.3 Scale .. 26

4.4.4 Delete a Coupling 27
4.4.5 List Module Info 27

4.4.6 List Coupling Info 27
4.4.7 Edit Order .. 27

4.4.8 Reverse Display 28
4.4.9 Exit DSM ... 28

4.5 Optimize Menu .. 29
4.5.1 Tournament .. 30

4.6 Functions Menu ... 32

4.6.1 Decomposition 33
4.6.2 Dependency Matrix 34
4.6.3 Trace Changes 35

4.6.3.1 Trace Range 36
4.6.3.2 Trace Forward 37
4.6.3.3 Trace Back 37

4.6.4 Decompose Circuit 38
4.6.5 Coupling Strengths 39

4.6.6 Cost and Time 40
4.6.7 User Function 43

4.7 Interface Menu .. 44

4.7.1 Spreadsheet .. 45
4.7.2 PERT .. 45
4.7.3 DSS .. .46

Help Menu ... 47

2

1. INTRODUCTION

Large, multidisciplinary engineering systems can require a complex design
cycle. Before a design cycle begins, possible couplings among the design
processes must be determined. After these couplings have been identified, a
design cycle can be decomposed to identify its organization. The Design
Manager's Aid for Intelligent Decomposition (DeMAID) is a knowledge-based
software tool for ordering the sequence of design processes [1,2]. The DeMAID
tool displays the processes in a design structure matrix (DSM) format in which
an element on the diagonal is considered to be any process (or module) that
requires input and generates an output [3]. Off-diagonal elements indicate a
coupling between two processes. The primary advantage of the DSM format
over other display tools, such as PERT or process flowcharts, is the ability to
group and display the

c(amlyes) Tj 58 0 TDfou(and) Tj 35 0 TD (in) Tj 13 0 TD (the) Tj 21 0 TD (design) Tj

0 0 TD

9356 -13 TD (cycle.) Tj 39 0 TD (After) Tj 29 0 TD (the) Tj 20 TD (coenerihave) T4533 0 TD (b (cycs)) Tj 16 0 TD (have) Tj 30 0 TD (been) Tj 10 0 TD (determints,) Tj 17 0 TD (titer) Tj715 0 TD (processes) Tj 59 0 TD (must) Tj

0 0 TD

-399 -14 TD (be) Tj 17 0 TD (ordered) Tj 46 0 TD (in) Tj 13 0 TD (such) Tj 29 0 TD (a) Tj 10 0 TDwplay) Tj 25 0 TD (to) Tj 14 0 TD (pducate) Tj 46 0 TD (the) Tj 20 TD (bemust) Tj 26 0 TD (design) Tj 39 0 TD (in) Tj 13 0 TD (the) Tj 21 0 TDleamusta The ovsition of DeMAIDalered (is) T2 42 0 TD asksta
knowleds,KB).tyTheoved, of

orderirts, which pvnsiays the input to
for the geticry GAle)abilityas to the

ovsition of DeMAed, which is

theGAheallow(is) Tj 37 0 TD (a) Tj 10 0 TDlareds,
of orderirty of processes in an b (cyces) Tj 30 0 TD (to) Tj 14 0 TD (be) Tj 17 0 TDexaermid)and

the ordering on andrequilemen.st

BACKGROUND

2. BACKGROUND

This section provides background information, included in this information is an
overview of the program and a description of two of the underlying concepts of
DeMAID/GA, the DSM and the KB.

2.1 PROGRAM FUNCTION OVERVIEW
The DeMAID/GA software is written in C and is available on Mac and UNIX

computers. DeMAID/GA is a menu-driven program with interfaces to a KB.
Figure 1 indicates the major functions of DeMAID/GA. These functions are
further described in section 4.

Main Program (C)

File Optimizer Interfaces

Plan
Display Help

CLIPS Inference Engine

Figure 1. Diagram of DeMAID/GA.

2.1.1 Rle Structure

The user is only responsible for creating one file, the input file, which contains a
list of all modules that might possibly contribute to the solution of the problem.
The components of this file are described in section 3. Several of the
DeMAID/GA functions require the user to specify a file name for input and/or
output. A window opens to aid the user in making the selection. The prefix for
the user-defined filenames should represent the problem, while the suffix
should represent the function that creates the file. For example, if the user is
designing a brake, the input file might be called brake.npt and the output files
from the Plan and Schedule functions might be called brake.plan and
brake.sked respectively. Because the user can name the files and their
location, different directories or folders may be easily maintained for different
projects. Each function in DeMAID/GA reads and writes from its own set of files
described in section 4. Some of the functions write information to a log file
which can be used as a reference in the decision making process.

4

BACKGROUND

2.1.2 Program Execution
DeMAID/GA is executed by "clicking" on the DeMAID/GA icon for Macs or typing
in the name of the executable program on a UNIX computer. The executable

file must be in the same folder with the rule files. The Plan function must always
be executed first, followed by the Schedule function, followed by the DSM
function. Within the context of DeMAID/GA, the term p/an identifies the process
in which modules contribute to the solution of the problem and the term
schedule is used to describe the dividing the modules into iterative subcycles
and the ordering the subcycles into a meaningful solution sequence. Once the
data has been displayed as a DSM, any of the other functions in DeMAID/GA
may be called. If the user has saved the data file created by the Plan, Schedule
or DSM functions, then DeMAID/GA can be restarted from that point without

having to execute previously called functions.

2.1.3 Computer Differences
DeMAID/GA functions are almost identical regardless of the computer.
However, there three differences which need to be mentioned.

1. Before executing DeMAID/GA on a UNIX computer, the user must set the
appropriate default values with the statement

setenv XENVlRONMENT app-defaults

2. Intermediate information is often written to a console window for the user

to see. The data written to this window is also saved to a log file for future
reference. On Mac computers, the console window is only displayed when
information is written to it and sometimes it may be hidden behind the window
displaying the DSM. On UNIX computers, the console window is always
displayed.

3. The user can move the DSM around in the display window with scroll
bars on a UNIX computer and with arrows on a Mac computer. Currently, there
is no icon to show when the program is executing an function.

5

BACKGROUND

2.2 DESIGN STRUCTURE MATRIX

The DSM is used to display the sequence of processes [3].

shown in figure 2.

A sample DSM is

i

C Ircilts

C rossove r

Feedforwa rd

Couplings

I

Feedback

Couplings

I

I

Figure 2. Design structure matrix.

In the DSM, the processes are shown as numbered boxes on the diagonal.
Output from a process is shown as a horizontal line that exits a numbered box,
and input to a process is shown as a vertical line that enters a box. The off-
diagonal squares that connect the horizontal and vertical lines represent
couplings between two processes. Squares in the upper triangle of the DSM
represent feedforward couplings;, squares in the lower triangle of the matrix
represent feedback couplings. Feedback couplings imply iterative subcycles in
which initial data estimates must be made. The KB within DeMAID/GA which is

written with CLIPS [4], orders the processes in such a way that feedback
couplings are eliminated. However, in many cases, not all of the feedback

6

BACKGROUND

couplings can be eliminated. If certain feedback couplings cannot be
eliminated, DeMAID/GA groups the processes into iterative subcycles called
circuits. In figure 2, processes 1-3, 5-19, 21-25, and 26-29 are grouped into
circuits. The circuits boxes are drawn with a thicker line to distinguish them for
the process boxes.

The DeMAID/GA software also identifies crossovers.. Crossover, in this context,

occurs when feedback from one process crosses that of another process
without an exchange of data through the intersection (no off-diagonal square).
Crossovers are only defined in terms of feedback couplings. For example, in
figure 2, a crossover occurs when the feedback coupling process 13 to process
7 crosses the feedback coupling process 17 to process 12. Crossovers should
be avoided if possible because they can obscure straightforward convergence
of the design process. The DSM in figure 2 contains 20 feedback couplings
and 3 crossovers.

In the original version of DeMAID, a KB was used to minimize feedback
couplings and identify circuits. Crossovers were identified but were not
minimized. No time factor, cost factor, or iteration factors (i.e. the number of
iterations required for convergence) were applied. After the circuits were
identified, DeMAID attempted to minimize the feedback couplings within a
circuit. In most cases, although more than one ordering could produce the
minimum number of feedback couplings, only one ordering would be found.

A large circuit, such as the one in figure 2 that contains processes 5-19 can be
very expensive to converge because the iterative subcycles defined by the
feedback couplings are nested, which requires numerous executions of
potentially expensive processes. Thus, the original version of DeMAID was
enhanced to provide a GA that rapidly examines many different orderings of
processes within a circuit and selects the best ordering based on cost, time, and
iteration requirements. This enhanced version is called DeMAID/GA.

7

BACKGROUND

2.3 THE KNOWLEDGE BASE

The CLIPS [4] knowledge-based system was developed at NASA Johnson

Space Center. The CLIPS system is written in C and performs forward chaining

based on the Rete pattern matching algorithm. Three main components make

up this knowledge-based system (fig. 1): the facts (section 2.3.1), the rules

(section 2.3.2), and the inference engine (section 2.3.3).

2.3.1 Facts
Facts are the basic form of data in the KB and are contained in a facts-list. A fact

is composed of one or more fields, with each field separated by a space. A field

can contain a number, a word, or a string. Facts can be asserted into the facts-

list by an assert command in the calling program before the inference engine is
executed. The user creates a list of facts as an input file (sections 3 and 5) to

the program. An example of a fact defining a module (section 3.1.3) is

(module 7 structures 10 20 feout uk geom aero)

2.3.2 Rules

The name of the rule is declared in the defru/e statement and must be unique.

A rule states that specific actions (after the => sign) are to be taken if certain

conditions (before the => sign) are met. Examples of actions include returning

data to the calling program or asserting a new fact into the facts-list. A "?"

before a name in a rule indicates a single variable and a "$?" before a name

indicates a multi-variable list. Any line beginning with a ";" is a comment.

A rule is executed based on the existence or non-existence of facts in the facts-

list. Each major function (section 4) in DeMAID/GA has its own independent

rule base. Currently 21 rule files can be loaded into the KB as needed. The

user cannot modify the rules. An example of a rule which finds tightly coupled
modules is

; Find tightly coupled modules where the output of

; module "name1" is input to module "name2" and vice-versa

(defrule find-tightly-coupled-modules

; conditions

(module ?number1 ?name1 ?type1 ?time1 ?output1 uk $?inlistl)
(module ?number2 ?name2 ?type2 ?time2 ?output2 uk $?inlist2)

(test (member ?output2 $?inlistl))

(test (member ?output1 $?inlist2)) =>

; actions

(assert (tightly-coupled ?name1 ?name2)))

8

BACKGROUND

2.3.3 Inference Engine

The inference engine applies the knowledge (rules) to the data (facts) by
pattern matching the facts in the facts-list against the conditions of the rule. The
basic execution cycle begins by examining the KB to determine if the conditions
of any rules have been met. All rules with currently met conditions are placed
on the agenda, which is essentially a push down stack. After the agenda has
been completed, the rule on the top of the stack is selected and its action(s) are
executed. As a result of the action(s) of the rule, new rules may be placed on
the agenda, and rules already on the agenda may be removed. This cycle
repeats until all rules that can be executed have done so. DeMAID/GA passes
control to CLIPS for execution of the inference engine, and CLIPS returns
control back to DeMAID/GA after all rules have been executed.

9

INPUT DATA

3. INPUT DATA

The input file consists of lists where each list contains one or more items
enclosed in parentheses. The input data for two sample problems

("conceptual_design" and "test") are listed in section 5. The first field in each list
designates the type of list for the inference engine. Fields marked in boldface
are not to be changed by the user. The data in the input file are case-sensitive.
Fields are blank-delimited (tabs are not allowed). Some of the lists defined
below are required (section 3.1), while others are optional (section 3.2). The
lists can appear in the input file in any order.

3.1 REQUIRED INPUT

The following lists are required as input to DeMAID/GA:

3.1.1 (title title-name)
title-name - a name that describes the problem, no spaces are

allowed in the title.

Example: (title conceptual_design)

3.1.2 (maximum max-number)
max-number-a number that represents the total number of

modules.

(Note: maximum number of modules on a Mac is 85 and 200 on a
UNIX computer.)

Example: (maximum 25)

3.1.3 (module number name type time output-name uk input-list)
(sections 5.1.1 and 5.2.1 contain sample problems)

number- a unique number for each module (beginning with 1 and
numbered consecutively).

name - a unique name that describes the module.

type - this item can have two meanings. If the (cost) list
(section 3.2.1) is part of the input file, then an estimate of how
much the module will cost to complete execution can be
placed in the field. Otherwise, the filed defines the type of
function, where, the type is 4 for an objective function, 3 for
a design variable, 2 for a behavior variable, and 1 for a
constraint function. If neither cost nor type of function is
desired, place a 0 (zero) in the field as a place holder.

10

INPUT DATA

time - an estimate of how long the module takes to complete
execution.

output-name - a unique name that describes the output of a
module. Regardless of whether the output is a single value
or many values, this field is given a single, unique name.
(Sometimes a module must be added to keep modules from
being removed from the input file because the output-name
is not a member of an input-list. This module will have as its
input-list the output-names of all modules with an output-
name not used in an input-list. The term "goal" must be in
lower case and is the output-name for this module.)

uk- stands for unknown. This item is a status marker for the

inference engine and is changed internally by the KB.

input-list- a blank-delimited list of the input requirements for a
module. If a module requires no input from within the
system (i.e., the input is from an external source or the
module is for initialization purposes), then the term "no-
input" is used. This term must be in lower case and must

have the hyphen.

Examples: (module 1 init 5 25 data uk no-input)
(module 2 structures 10 20 feout uk dv bv cons data)
(module 29 final 30 10 goal uk feout matout)

11

INPUT DATA

3.2 OPTIONAL INPUT

Several optional lists can be added to the input file to take advantage of
different capabilities available in DeMAID/GA. These lists include

3.2.1 (cost)

If this list is used, then the value in the type field of the module list
is an estimate of how much the module will cost to complete
execution.

3.2.2 (strength uk coupling-strength output-name input-name)
(section 5.1.2 contains a sample problem)

uk- stands for unknown. This filed is a status marker for the

inference engine and is changed internally by the KB.

coupling-strength - defines the coupling strength of the input -
name field to the output-name field. Seven choices are
available for coupling-strength: ew - extremely weak, vw -
very weak, w - weak, n - nominal, s - strong, vs - very strong,
and es - extremely strong. The strength can be based on
user knowledge of the problem or defined by a normalized
sensitivity number. The sensitivity number is converted into
a coupling strength in the Plan function (section 4.2).

output-name - the name of the output that is generated by a
module using input-name.

input-name - the name of an item in the input-list field for the
module that generates output-name.

Examples: (strength uk vw disp dv)
(strength uk .235 disp dv)

3.2.3 (override coupling-strength iterations)

This list, in conjunction with strength lists, aids in determining the cost
and/or time in iterative subcycles. An assumed relationship exists
between coupling-strength and the number of iterations required for the
convergence of an iterative subcycle. The defaults are as follows: 2
iterations for an extremely weak coupling strength; 3 iterations for a very
weak coupling strength; 4 iterations for a weak coupling strength; 5
iterations for a nominal coupling strength; 6 iterations for a strong
coupling strength; 7 iterations for a very strong coupling strength; and 8
iterations for an extremely strong coupling strength. If a different

12

INPUT DATA

relationship is preferred, then this list can be used to override the
defaults.

coupling-strength - defines the coupling strength of an input-name item to
the output-name item. Seven choices are available for coupling-
strength (section 3.2.2).

fferations - the number of iterations required for convergence in relation

to a particular coupling-strength. Do not use 1 as an override value.

Example: (override vw 5)

changes the number of iterations required to converge a
subcycle associated with a very weak (vw) feedback
coupling from 3 iterations to 5 iterations.

3.2,4 (output output-name component-list)

If this list is used, then the output-name of a module list (section 3.1.3) is
divided into a blank-delimited component-fist. If the output-name for a

module is goal, then the list is (output goal no-output). When this list is
used, the module list terminates after the uk item. The DeMAID/GA
software builds the input-fist for a module list from the output and
requires lists (section 3.2.5).

output-name - a unique name that describes the output of a module.

component-list - names of the various components of output-name.

Example: the output name, feout, that is created by the module
structures in the list

(module 1 structures 10 20 feout uk dv bv cons data)

could be divided into three items, disp, stress, and buckling
with the list:

(output feout disp stress buckling)

3.2.5 (requires uk coupling-strength outputi inputi)

This list is used in conjunction with the output list (section 3.2.4). If this
list is used, then the strength lists (section 3.2.2) must be omitted.
DeMAID/GA generates the strength lists from the requires lists.

13

INPUT DATA

uk- stands for unknown. This item is a status marker for the inference

engine and is changed internally by the KB.

coupling-strength - defines the coupling strength of the inputi item to
the outputi item. Seven choices are available for coupling-strength
(section 3.2.2). If more than one requires list exists between two
modules, then the maximum coupling-strength is retained in generating
the strength list. If the coupling-strength is not known, then use n
(nominal). If sensitivity data are available, then the coupling strength is
replaced by a number that represents the normalized sensitivity. This
number is converted to a coupling strength (section 4.3.3).

outputi - the name of a component of the output-name generated by a
module list that contains the inputi item.

inputi- the name of a component of an item in the input-list field to the
module list that generates output-name.

Examples: given two modules

(module 1 initial 5 15 dv uk no-input)
(module 2 structures 10 20 feout uk dv bv cons data)

with the output divided by the lists

(output dv dvl dv2 dv3 dv4)

(output feout disp stress buckling)

then either of the two following lists provide the coupling strengths

(requires uk vw disp dvl)
(requires uk .235 disp dvl)

3.2.6 (sensdata ncoupling kl k2)

For this list to be used, sensitivity data must have been computed
external to DeMAID/GA. This list is an input when converting sensitivity
data (section 4.3.3) to coupling strengths [5].

ncoupling - number of couplings in the problem.

kl, k2 - user-defined values based on experience for computing the

upper and lower bounds of the local normalized sensitivity space
in terms of the statistical mean value and standard deviation.

Example: (sensdata 24 26.375 4.75)

14

PROGRAM FUNCTIONS

4. PROGRAM FUNCTIONS
The functions of DeMAID/GA are described in the following sections.
the major functions is called via a menu.

Each of

4.1 FILE MENU

The File function includes three selections: Save Facts (section 4.1.1), Print
(section 4.1.2), and Quit (section 4.1.3).

4.1.1 Save Facts

The Save Facts selection allows the user to save the current facts (from the
"disp.out" file) to a user-specified filename. This selection is particularly useful if
the user has made changes to the DSM with the DSM function.

4.1.2 Print

The Print selection allows the user to print the current DSM.

DSM must be displayed by the DSM function.

Before printing, the

4.1.3 Quit
The Quit selection exits DeMAID/GA.

15

PROGRAM FUNCTIONS

4.2 PLAN MENU

The Plan function provides three selections: First Pass (section 4.2.1), Preplan

(section 4.2.2), and Sensitivity (section 4.2.3). Flowcharts of the Plan function

are shown in figures 3a and 3b. The menu selections are shown in the

rectangles. The rule files all have a ".bin" suffix. The input file (section 3) to all
selections is the "file.npt" file and all selections create an output file. If

sensitivities are available (section 3.2.6), that selection creates the "file.sens"

file which can be input to either the Preplan or the First Pass selection. If the

output has been divided (section 3.2.4), then Preplan is selected and it creates

the "file.preplan" file which is input to the First Pass selection. If sensitivities are

not available, then the "file.npt" file is input to Preplan. If neither the Sensitivity

nor the Preplan selection is chosen, the "file.npt" file is input to the First pass

selection. The Preplan selection and the First Pass selection both create log

files, "preplan.log" and "plan.log" respectively.

No

Yes Input Output

fils.sens file.plan

Yes

Input

file.preplan Fi_t Pass

No

Input Rules Output

file.npt plan.bin plan.log

Figure 3a. Flowchart of First Pass selection of the Plan function.

16

PROGRAM FUNCTIONS

No

Rules Output

sens.bin file.sens

Input

Sensitivity

Rules

preplan.bln

Input

file.npt

Output

preplan.log

Yes

No

Preplan Output

file.preplan

Figure 3b. Flowchart of Sensitivity and Preplan selections of the Plan function.

4.2.1 First Pass

Input file - user-defined filename, created by user

Output file - user-defined filename, input to the Schedule function

Rule file - plan.bin

Log file - plan.log

In the First Pass selection, the rule file, plan.bin, is loaded into the KB. Input

data are read from a user-defined filename (section 4.2) and asserted as facts

into the KB. The inference engine is executed.

The first function in the First Pass selection is to determine those modules that

contribute to the solution of the problem. This function is accomplished by

checking the output-name of each module in the modules list (section 3.1.3)

against the input-list items of the other modules. If the output-name of the
module is an item in the input-list of at least one other module, then that module

contributes to the solution of the problem and is retained in the" file.plan" file. If
a module is not a contributor, then it is removed from the list of modules in the

"file.plan" file and a message is printed to notify the user.

The second function is the determination whether any two modules have the
same output-name. If two modules do have the same output-name, then a

message is printed notifying the user to correct the error and DeMAID/GA stops.

The user must either remove one of the modules or change the output-name for

17

PROGRAM FUNCTIONS

one of the modules. If the output-name is changed, then the effected input-lists
of other modules must reflect that change.

Next, the input-lists for all modules are examined to determine whether all input
items of the list are satisfied by the output-name from other modules. Modules

with "no-input" as an input-list usually represent data initialization or are
satisfied by external inputs; therefore these modules are not checked. If an item
in an input-list to a module is not satisfied, then a message is printed notifying
the user to correct the error and DeMAID/GA stops. The user must add a new
module to the input file to satisfy the input requirement or remove the item from
the input-list of the module.

Finally, if coupling strength lists (section 3.2.2) are part of the input file, these

lists are checked in a manner similar to that for the module lists. Each coupling
strength list is checked against the module lists; and if no match exists (either
input or output), then that particular coupling strength list is removed and a
message is printed to notify the user.

The "file.plan" created by the Plan function is slightly different from the original
input file. Two new fields (both containing "null") have been added between the
status filed and the input-list fields for use in the Schedule function. The new
format is

(module 10 TASKC15 1 0 G015 uk null null DV06 DV07 DV08 DV23)

In addition, if one or more modules are removed by the Plan function, the
modules are renumbered to maintain a continuous numbering sequence. The
maximum number of modules in the maximum list (section 3.1.2) is modified to
reflect the change.

18

PROGRAM FUNCTIONS

4.2.2 Preplan
Input file - user-defined filename, created by user
Output file - user-defined filename, input to First Pass selection of the Plan

function

Rule file - preplan.bin
Log file - preplan.log

Preplan is selected when the user has broken down the output name (section
3.2.4) in a module list (section 3.1.3) with an output list (section 3.2.4). The
format for a module list when Preplan is chosen is

(module number name type time output-name uk)

Notice that the input-list following the "uk" filed is missing. The input-list is
constructed from the Preplan rules in the "preplan.bin" file.

This selection also needs the requires lists (section 3.2.5). As an option, the
user can also select coupling strengths with the requires lists. If no coupling
strengths (section 3.2.2) are available, then a nominal strength should be used.

The Preplan rules determine whether the input-name of each requires list
appears as an output-name in another requires list. Both the input and output of

all requires lists are checked to determine if they are members of the output item
list. If any list fails the test, the user is notified and DeMAID/GA stops.

The requires and output lists are used to build the input-list of a module. The
requires lists are also used to build the strength lists. Because the output-name
has been broken down in the output lists, more than one coupling strength may
exist between the same two modules. The Preplan rules select the strongest
coupling strength for the strength list.

19

PROGRAM FUNCTIONS

4.3.3 Sensitivity

Input file - user-defined filename, created by user

Output file - user-defined filename, input to First Pass or Preplan selection of
the Plan function

Rule file - sens.bin

Log file - none

The Sensitivity selection [5] allows the user to compute coupling strengths from

normalized sensitivity data. A linear distribution between upper and lower
bounds of the local sensitivity space is used to quantify the seven levels of

coupling strengths (section 3.2.2). In this approach the mean and standard
deviation are calculated where the mean value of the local normalized

sensitivity derivatives (si) can be determined from

N

1 _L,S _

where N is the number of couplings. The associated standard deviation can
now be determined from the relation,

N 2 1112

The upper and lower bounds of the local normalized sensitivity space are
defined in terms of the mean value and standard deviation as,

where kl and k2 are user-prescribed values based on experience and

heuristics. Anything outside these bounds is either extremely weak (ew) or

extremely strong (es). The sensitivity rules read the requires (section 3.2.5) or

strength lists (section 3.2.2), which contain sensitivity data in the strength field.

A statistical analysis is performed on the sensitivity data to determine the ranges

for the seven levels of coupling strengths. Based on where in the range their

values fall, the sensitivity data are replaced by a coupling strengths.

20

PROGRAM FUNCTIONS

4.3 SCHEDULE MENU

The Schedule function contains three selections: I/O Schedule (section 4.3.1),
Parallel Schedule (section 4.3.2), and Skip Schedule (section 4.3.3). A

flowchart of the Schedule function is shown in figure 4. The menu selections

are in the rectangles. The rule files all have the ".bin" suffix. The input file to all
selections is the "file.plan" file and all selections create a "file.sked" file as

output. The I/O schedule selection also creates a "sked.log" file.

Input

Rules Rules

para.bln sklp.bln

file.plan

I I/0 I Parallel Skip I
Schedule I Schedule Schedule I

Figure 4. Flowchart of Schedule function.

After a selection has been made for the Schedule function, two new fields are

created in the module lists (section 3.1.3) in the "file.sked" file that are not found

in the original data or the :file.plan" file from the Plan function. One field (field 3)
contains the original number of the module. Field 2 now contains the current

module number found by reordering the modules in the Schedule function. The
second field (field 9) contains a number that indicates the circuit in which the

module is contained. This circuit number is the number of the first module
contained in that circuit.

Example:

After scheduling, module 10 becomes module 7 located in circuit 3.

Before: (module 10 TASKC15 1 0 G015 uk DV06 DV07 DV08 DV23)

After: (module 7 10 TASKC15 1 0 G015 uk 3 DV06 DV07 DV08 DV23)

21

PROGRAM FUNCTIONS

4.3.1 PC) Schedule

Input file - created by First Pass selection in the Plan function
Output file - user-defined filename, input to the DSM function
Rule file - sked.bin

Log file - sked.log

If the user selects the I/O Schedule, then the Schedule function reorders the

modules based on their couplings. If the modules and their couplings are
placed into the DSM without regard to the ordering, then little information
regarding the desirable structure of the design process is available to the
design manager because the modules are most likely disorganized and contain

a substantial number of feedback couplings. The feedback couplings among
the modules are eliminated by examining the couplings and moving modules
along the diagonal to convert feedback couplings into feedforward couplings. If
any feedback couplings remain, the coupled modules are partitioned into
iterative subcycles called circuits. The I/O schedule selection no longer orders
the modules within the circuits but continues to order the circuits within the

design process. Steward [3] implements the partitioning into circuits with matrix
manipulations; DeMAID/GA follows the same steps as Steward but replaces the
matrix manipulations for partitioning by applying rules from the "sked.bin" file.

The DSM's for the "conceptual_design" problem and the "test" problem defined
in section 5 are shown in figures 5 and 6 respectively. These DSM's are the
results of I/O scheduling.

Lebel "lime Cost

D"/NMOOL 30 30

STDMOCH 40 20

STRMODL 10 50

HANDQUL 10 50

S'11:LMODE 10 50

GEOMDI=Y 50 10

AROSRYO 40 20

STRDYNA 50 10

CSY_I_NL 20 40

FAEROCH 20 40

INr'rl)AT 40 20

RYSEDAT 30 30

MISPERF 30 30

YEH PERF 2O 4O

RAEROCH 30 30

AEROANL 20 40

PRESDEF 30 30

S'TRANAL 40 20

STRC'PP/T 50 10

W M.NAL 40 20

AEROMDL 20 40

FINLDAT 20 40

!
-- _ e I,.,m

Figure 5. "conceptual_design" problem DSM.

22

PROGRAM FUNCTIONS

The "conceptual_design" problem (section 5.1) has one circuit.
has an associated cost and time.

TASKF01

TASKD23

TASKC14
TASK_6

TASKD07

TASK_)8

TASKC15
TASKC04

TASKDO9

TASKD10
TASKD 1 I

TASI<_04

TASKC05

TASKC17
TASKC16

TASKD15

TASKD12
TASKD14

TASKD13

TASI<3BO1

TASK¢10
TASKDI9

TASKD_0

TASKC09
TASKC06

TASKDI6

TASKD17
TASKDI8

TASKC07

TASKC08

TASKB02
TASKC0!

TASKC02
TASKD2 I

T,kSI<D22
TASK¢12

TASKCI3

TASKD03
TASKD02

TASK]_ I

TASKC! I
TASI_B03

TASKD04

TASKIX)5

TASKC03

_ ft-Ii.-

1

Each module

Figure 6. "test" problem DSM.

The "test" problem (section 5.2) has nine circuits. No costs or times are

associated with this problem. The type field in the module list (section 3.1.3)
defines the design elements: constraints; behavior variables; design variables;
and objective function.

23

PROGRAM FUNCTIONS

4.3.2 Parallel Schedule

Input file - created by First Pass in the Plan function
Output file - user-defined filename, input to the DSM function
Rule file - para.bin
Log file - none

Parallel Schedule is selected if the user wishes to examine the potential gains
from parallel processing. When scheduling by parallel requirements, the user
must provide the number of available processors and each module list (section
3.1.3) in the input file must have a time associated with it. A window appears to
request input for the number of processors. For parallel scheduling, the circuit
boxes represent the processors and contain the modules to be executed on that
processor. The rules in the "para.bin" file compute the time required to execute
all modules in sequence and divides that time by the number of processors
available, which yields an average time per processor.

Ideally, all processors would complete processing at the same time; for this
reason, each processor is assigned the average time as a starting point.
DeMAID/GA begins assigning modules to the processors; those modules that
require the most time are assigned first. The module times are then subtracted
from the time available on a given processor. The remaining time slots are
assigned by determining the module with the maximum time that is less than the
remaining time available on a given processor. This process continues until all
modules have been placed or until no time slot is available on any processor.

If no time slots are available and a module has not yet been assigned to a
processor, then the module time is divided by the number of processors
available and added to the average time of the processors. Then the placement
process is repeated. After all modules have been placed, the parallel
scheduling function is complete. DeMAID/GA lists the number of iterations
with parallel processing that can be completed before the time is equal to the
sequential time. This information can be used to examine the trade-offs

between sequential and parallel processing but is of no use unless the module
times are known.

4.3.3 Skip Schedule

Input file - created by First Pass in the Plan function
Output file - user-defined filename, input to the DSM function
Rule file - skip.bin
Log file - none

The Skip Schedule selection is chosen when the user wishes to skip the
Schedule function and go directly to the DSM function. The rules in the
"skip.bin" file convert the file output from the Plan function into the new format
(section 4.3) for input to the DSM function.

24

PROGRAM FUNCTIONS

4.4 DSM MENU

Input file - first call uses a file created by a selection in the Schedule function,

and subsequent calls read file disp.out

Output file - disp.out

Rule file - disp.bin

Log file - none

A flowchart of the DSM function is shown in figure 7. There are several options

available in this function: Display DSM (section 4.4.1); Labels & Titles (section

4.4.2); Scale (section 4.4.3); Delete a Coupling (section 4.4.4); List Module Info

(section 4.4.5); List Coupling Info (section 4.4.6); Edit order (section 4.4.7);

Reverse Display (section 4.4.8); and Exit DSM (section 4.4.9).

Input Input
If No

file.sked First Time disp.out

DSM

Figure 7. Flowchart of DSM function.

25

PROGRAM FUNCTIONS

4.4.1 Display DSM
The user must select Display DSM before selecting any other options in this
menu to load the rules in the "disp.bin" file. If the DSM function is reentered

after Exit DSM (section 4.4.9) has been selected, then Display DSM must be

selected again. Display DSM displays the DSM. Some DSM's may not fit in the

display window. If necessary, the user can enlarge the window by dragging the

bottom right corner outward, or scrolling through the window using the arrow

keys on a Mac or the scroll bars on a UNIX computer.

Important: The user must select Exit DSM (section 4.4.9) before proceeding to
other functions outside the DSM function.

4.4.2 Labels & Titles

Labels & Titles opens a window shown in figure 8 which allows the user to
select the font (default is Helvetica) and size (default is 24) for the title, and the

font (default is Helvetica) for the labels.

Font and Size

_le:,l X elvetica "1

.tie!/ v I

....Helvetlca,_, v

Show Numbers

[] in list

[] in modules

[] Original #'s

[] Show Labels

[] Show Time

[] Show Cost

(Cancel I

Figure 8. Labels & Titles window.

The user can select the module information to be displayed with the DSM by
"clicking" on selected boxes. An =X" means the selection has been activated.

These options allow the user to display the numbers (both in the list down the

side and in the modules on the diagonal), the labels, the time, and the cost. The

Original #'s box can be selected to display the original module numbers

(section 4.3) in the list down the side. This box is not selected initially.

4.4.3 Scale

Scale allows the user to choose one of four different sizes from a submenu to

display the DSM. The four choices are tiny, small, normal (default), and large.

"tiny" is selected, much of the display information is not available for display.

If

26

PROGRAM FUNCTIONS

4.4.4 Delete a Coupling
Delete a Coupling allows the user to delete a specific coupling between two
modules. Windows open to allow the user to enter the module numbers of the

"from" and "to" modules. The coupling is deleted from the facts list, and the

DSM is redrawn without it. A listing that describes the deleted coupling is
displayed in the console window.

4.4.5 List Module Info

List Module Info allows the user to list information about a specific module in the
console window. A window opens so that the user can enter the module

number. The name, time, cost, output name, and couplings (both to and from
the module) are shown in the console window.

4.4.6 List Coupling Info

List Coupling Info allows the user to display information about a specific

coupling between two modules in the console window. Windows open so that
the user can enter the number of the "from" and "to" modules. The name of the

coupling and the two modules are shown in the console window.

4.4.7 Edit Order

Edit Order opens the window shown in figure 9 to allow the user to interactively
move modules around in the DSM.

Move Module I J

Pivot Module ! J

.Before Pivot

After Pivot }

I Reset]

Figure 9. Edit Order window.

The user selects a module to move and a pivot module by typing the module
numbers in the appropriate boxes. The user can place the "move" module

before or after the "pivot" module by "clicking" the appropriate button. The

"Reset" button restores all modules to their original position in the DSM. When

the user is finished moving modules, the "Done" button is selected. The DSM is

redrawn with the modules in their new positions.

27

PROGRAM FUNCTIONS

The module numbers in the display do not change to reflect the new sequence.
Upon exiting the DSM function, module numbers written to the "disp.out" file
reflect all changes made within the function. Therefore, if the DSM function is
reentered, the process boxes along the diagonal will be in the same order as
when the function was exited, but the module numbering sequence will have

changed.

4.4.8 Reverse Display
Reverse Display changes the DSM display so that the feedback couplings are
in the upper triangle of the DSM and the feedforward couplings are in the lower
triangle of the DSM. There is a "check" mark by Reverse Display in the menu to
indicate when the DSM is displayed in the reverse format. This display format is

used by Steward [3]. Selecting this option a second time reverses the display
back to the original format. The reverse display for the "conceptual_design"
problem DSM (figure 5) is shown in figure 10.

Lebel Tree Cos__t

DYNMODL 30 30

4O 2O

S'IRM3(>L 10 50

HANDQUL 10 50

Sll_/K)l_ 10 50

GIEOMI>EY 50 10

AROSRYO 40 20

S'IRDYNA 50 10

CSVSANL 20 40

FAEROCH 20 40

INII'DAT 40 20

FWSEDAT 30 30

MI$ PERF 30 30

VEHPERF 20 40

RAEROCH 30 30

AEROANL 20 40

PRESDEF 30 30

SIRANAL 40 20

STRCTWT 50 10

WIANAL 40 20

AEROMDL 20 40

FINLDAT 20 40

Figure 10. Reverse DSM for the "conceptual_design" problem.

4.4.9 Exit DSM

The user must select Exit DSM to close the "disp.bin" file, clear the KB, and
save the modified fact-list on the "disp.out" file before proceeding to other
functions.

28

PROGRAM FUNCTIONS

4.5 OPTIMIZE MENU

Input file - disp.out created in the DSM function

Output file - modified disp.out file

Rule file - ga.bin

Log file - none

The Optimize function is selected to optimize the ordering of the modules within

the circuits with a GA. The user should become familiar with GA operations and

terminology, such as population, selection, crossover, and mutation [7,8,9]. A
flowchart of the Optimize function is shown in figure 11. The menu selection is
in the rectangular block.

Genetic Algorithm
(Tournament)

Figure 11. Flowchart of the Optimize function.

29

PROGRAM FUNCTIONS

4.5.1 Tournament
Currently, only one GA method, tournament, is available in DeMAID/GA. Others

may be added at a later date. Each circuit is passed to the GA to optimize

individually. A window (figure 12) is displayed for each circuit. The default
values for the GA are in parentheses in the parameter descriptions below. The

user can change the default parameters by typing new numbers in the
appropriate boxes. "Click" the OK box when the parameters have been
selected.

Population [J

Mutation Probability [] wt. Cost

Converqence Threshold I I wt. Time

Seed I J wt. FB

Max Iterations [I wt. CO

Objective Function Control

[Cancell I OK 1

Figure 12. Window for setting GA parameters.

• Population (100) - population size

• Mutation Probability (1.0) - mutation probability in percent, default is 1%
• Convergence Threshold (0.9) - a converged population is one for which

the average fitness is at least the "Convergence Threshold" of the

best fitness seen so far (default is 90%)

• Seed (3818969) - seed for random number generator
• Max Iterations (500) - maximum number of iterations to determine the best

sequence
• wt. Cost (1.0) - cost weight

• wt. Time (1.0) - time weight

• wt. FB (1.0) - feedback weight
• wt. CO (1.0) - crossover weight

The population consists of members which are different combinations of

ordering sequences of the modules. The GA begins with a randomly generated

initial population of a size determined by the user and proceeds from

generation to generation by applying the three main GA operations - selection,
mutation, and crossover. For the tournament method, two members are

randomly chosen from the current population. The fitness levels of each of the
selected members are compared and the member with the best fitness level is

30

PROGRAM FUNCTIONS

added to the mating pool. In addition to minimizing the number of feedback

couplings and crossovers, the fitness function for the GA in DeMAID/GA

determines the minimum cost and time required for the convergence of each

circuit. The GA sums the time and cost of each process contained in a feedback

loop and multiplies those sums by the iteration factor (section 3.2.3) for the

feedback to obtain the total cost and time to converge a circuit. The user-

definable weights determine the relative importance of each major component
of the fitness function. The fitness function in DeMAID/GA is

f it nes s= 1.0/((..__*f+wc*c+wtime*tim e+wcost*cost) ** 4)

where f is the number of feedback couplings, c is the number of crossovers, time

is the total time required to converge the circuit, cost is the total cost to converge
the circuit; and wf, wc, wtime, and wcost are user-definable weights. For the

simple tournament selection, the relative scale of this fitness function is

unimportant; Only the relation of the values (i.e. whether one fitness function is

larger than the other) is important.

Convergence is achieved when the average fitness of a population rises above
the user-defined percentage (convergence threshold) of the best fitness for that

population. At that point, the member of the population with the best fitness is

considered as the optimal. That sequence is written to the "disp.out" file. After

the GA has completed reordering all the circuits, the DSM function can be

reentered to display a DSM with the optimal ordering. The optimized DSM for

the "conceptual_design" problem (figure 5) is shown in figure 13.

Ltbel Twnt Cost

IN I1OAT 40 2:0

GEOMDEY 50 10

S1TIMODL 10 50

AEROMDL 20 40

AEROANL 20 40

PRESDEF 30 30

STRANAL 40 Z0

STRC'W'/T 50 10

W IANAL 40 20

STRMODE 10 50

RVSEDAT 30 30

RAEROCH 30 30

FAEROCH 2O 40

Sll_DYNA 50 10

$TDMOCH 40 20

DVNMODL 30 30

CSVSANL 20 40

HANDQUL 10 50

AROSRYO 40 _'0

YEHPERF 20 40

MISPERF 30 30

F INLDAT 20 40

Figure 1

1_

3. "conceptual_design" problem DSM after GA reordering.

31

PROGRAM FUNCTIONS

4.6 FUNCTIONS MENU

Functions allows the user to select from among nine different functions to
obtain more detailed information about the design project. The "disp.out" file
must be available for these functions to execute. These functions include:

Decomposition (section 4.6.1); Dependency Matrix (section 4.6.2); Trace Range
(section 4.6.3.1); Trace Forward (section 4.6.3.2); Trace Back (section 4.6.3.3);
Decompose Circuit (section 4.6.4); Coupling Strengths (section 4.6.5); Cost and
Time (section 4.6.6); and User Function (section 4.6.7).

A flowchart for three of the functions is shown in figure 14. The menu selections
are in the rectangular blocks.

Rules Rules Rules

mlvl.bin dmaLbln cpar.bln

Input

dlq).out

IDecompoeltion } [DependencyI Meh.lx [
Decompose

Circuit

Figure 14. Flowchart of the Decomposition, Dependency Matrix, and
Decompose Circuit selections.

32

PROGRAM FUNCTIONS

4.6.1 Decomposition
Input file - disp.out
Output file - user-defined filename, list of circuits for input to DeMAID/GA
Rule file - mlvl.bin

Log file - mlvl.log

Decomposition allows the user to examine the circuits to determine where
parallel processing is possible. Once a circuit has been found it can be treated
as a single process. No feedback couplings exist among the circuits; therefore,
no iteration occurs among the circuits. All iterative subcycles are contained
within the circuits. Thus, after the circuits have been identified by the Schedule
function, a multilevel hierarchical organization of the problem can easily be
achieved. As circuits with satisfied input requirements are identified, they are
placed on a given level of the hierarchy. Each circuit is placed on the level
below the lowest level that contains a circuit that generates input for the placed
circuit. All circuits on the same level can be executed in parallel. The DSM for
the "test" problem shown in figure 6 would have the multilevel display shown in
figure 15a. This display is saved in the "mlvl.log" file along with other descriptive
data.

Multilevel Display of Circuits
Level I 1
Level 2 2 8 4
Level3 3 9 5 6
Level 4 7

Figure 15a. Display of the multilevel structure of circuits.

The output file contains the circuits from the DSM of the "test" problem in figure
6 listed as modules (figure 15b). This file can be input to the Plan function
(section 4.2.1) to eventually display the circuits in the DSM format.

(title test)
(maximum 10)
(module I crktl 0 125 out1 uk no-input)
(module 2 crkt2 0 253 out2 uk out1)
(module 3 crkt3 0 218 out3 uk out2)
(module 4 crkt4 0 289 out4 uk out1)
(module 5 crkt5 0 216 out5 uk out4)
(module 6 crkt6 0 257 out6 uk out4)
(module 7 crkt7 0 161 out7 uk out6)
(module 8 crkt8 0 201 out8 uk out1)
(module 9 crkt9 0 121 out9 uk out8)
(module 10 crktlO 0 0 goal uk out3 out5 out7 outg)

Figure 15b. Circuits listed as modules in output file.

33

PROGRAM FUNCTIONS

4.6.2 Dependency Matrix
Input file - disp.out
Output file - none
Rule file - dmat.bin

Log file - dmat.log

Dependency Matrix builds an ordered matrix that identifies the functional
dependence between the constraints and the independent design variables
(See Section 3.1.3 to chose the correct type field for this module input.).
Behavior variables can be evaluated by using design variables; therefore, each
behavior variable can be replaced by a list of independent design variables.
Each constraint is examined to determine its dependency on design and
behavior variables. Whenever a constraint depends on a behavior variable, the
dependency of that behavior variable on the independent design variables is
substituted. This produces a rectangular matrix with constraint functions listed
row-wise and the independent design variables listed column-wise. A partial

dependency matrix for the "test" problem shown in figure 6 is shown in figure
16. An "X" indicates the dependency. The row and column numbers are the
module numbers.

Constraints

Design Variables
Module 2 3 4 10 1 1 13 14

7 X X X
8 X X X
9 X X

12 X X X X
16 X X X
17 X X X X

Figure 16. Partial dependency matrix for the "test" problem.

For example, in the "test" problem TASKC17 is a constraint function that
generates G017 as output. G017 requires (is dependent upon) DV23, a design
variable, and BV01, a behavior variable, as input. The behavior variable, BV01,
requires (is dependent upon) design variables DV12, DV13, DV14, and DV15.
Thus the module generating BY01 would be replaced by the modules
generating DV12, DV13, DV14, and DV15 in the dependency matrix and have
an "X" in the appropriate column. An "X" would also appear in the column for
the module generating DV23.

Building the dependency matrix reveals dependency patterns that may prove
advantageous in the development of multilevel optimization algorithms. The
dependency matrix is saved on the "mlvl.log" file.

34

PROGRAM FUNCTIONS

4.6.3 Trace Changes

The following three menu selections: Trace Range (section 4.6.3.1); Trace
Forward (section 4.6.3.2); and Trace Backward (section 4.6.3.3) allow the user

to examine the effects of changes made in the design process. Simply because
a change is made to one module in the design process, does not mean that all

modules must be reexecuted. To start the trace, a window is opened to allow
the user to enter the output name of the module involved in the trace. Two

modules are involved in the Trace Range option. After the trace is completed,
the DSM function is reentered and DeMAID/GA highlights (in yellow) the

modules that need to be reexecuted. If any module in a circuit is effected by the
change, then all modules in that circuit are highlighted. If the user is unsure of

the output name of the module to be traced, the List Module Info option (section

4.4.5) in the DSM function can be used to identify the module output name.

A flowchart of the Trace Changes selections is shown in figure 17. The menu

selections are in the rectangular blocks.

Rules Rules Rules

tracer.bin tracef.bin traceb.bin

Input

disp.out

i Trace i i Trace I J Trace i

Figure 17. Flowchart of the Trace Changes selections.

35

PROGRAM FUNCTIONS

4.6.3.1 Trace Range
Input file - disp.out

Output file - none
Rule file - tracer.bin

Log file - tracer.log

T race Range allows the user to trace the effects of a change made to one

module on a second module. The user specifies a range of interest providing
the output names of the modules that define the range. An example is shown in
figure 18. In this figure, a change is made to module 5. The user wants to see

the effects on module 29. The affected modules are indicated by the high-

lighted boxes. Modules 6-16, and 18 (because they are not affected by the

change to module 5); and modules 23, 24, and 26 (because they do not affect
module 29) do not need to be reexecuted.

Clrcult

I

Figure 18. Display of effects of change to module 5 on module 29.

36

PROGRAM FUNCTIONS

4.6.3.2 Trace Forward

Input file - disp.out
Output file - none
Rule file - tracef.bin

Log file - tracef.log

Trace Forward allows the user to trace the effects of a change made to one
module on the modules executed after it. The affected modules are highlighted.

4.6.3.3 Trace Back

Input file - disp.out
Output file - none
Rule file - traceb.bin

Log file - traceb.log

Trace Back allows the user to trace backwards to indicate those modules that

affect the given module. The affecting modules are highlighted.

37

PROGRAM FUNCTIONS

4.6.4 Decompose Circuit

Input file - disp.out

Output file - none

Rule file - cpar.bin

Log file - cpar.log

Many circuits are large, and significant time savings can be achieved by

executing some of the modules in parallel. Decompose Circuit assumes that
all feedback data are available as estimates. By using this assumption, the

rules that apply to circuit decomposition (section 4.6.1) can also be applied

here. For example, prior to reordering, the modules in the circuit of the

"conceptual_design" DSM in figure 5 decompose into the levels shown in figure
19.

Level 1 1 2 3 4 5 6 7 10 11 12 13 15 16
Level 2 8 14 17 21
Level 3 9 18
Level 4 19
Level 5 20

Figure 19. Display of levels of modules in the "conceptual_design" problem.

This decomposition shows that the circuit has a significant amount of modules

that can be executed in parallel, particularly on the first level. However, this

DSM contains many feedback couplings and iterative subcycles. After the DSM
has been reordered with the GA, the modules in the circuit of the

"conceptual_design" DSM in figure 13 decomposes into the levels shown in

figure 20.

Level 1 1 11 Level 9 14
Level 2 2 Level 10 15 19
Level 3 3 4 Level 11 16
Level 4 5 Level 12 17
Level 5 6 12 Level 13 18
Level 6 7 13 Level 14 20
Level 7 8 10 Level 15 21
Level 8 9

Figure 20. Display of levels of reordered modules in the "conceptual_design"
problem.

This ordering significantly reduces the number of feedback couplings and

iterative subcycles but at the expense of parallel processing. This can be seen
from the many levels with few modules on a level in figure 20. The display of

levels is saved on the "cpar.log" file.

38

PROGRAM FUNCTIONS

A flowchart for the two remaining functions is shown in figure 21. The menu
selections are in the rectangular blocks.

Rules Rules

cstr.bln candt.bln

Input

dlsp.out

I Coupling I Cost endStrengths Tlme

Figure 21. Flowchart of Coupling Strengths, and Cost and Time selections.

4.6.5 Coupling Strengths
Input file - disp.out
Output file - none
Rule file - cstr.bin

Log file - cstr.log

Coupling Strengths provides the user with recommendations on those modules

and couplings that might be removed (or temporarily suspended) from the

problem without a loss of solution accuracy [6]. There are seven levels of

coupling strengths (section 3.2.2). All modules with at least one coupling of
nominal or greater strength are retained. Modules with only extremely weak

couplings are suggested for removal. All other recommendations depend on

the relationship among the coupled modules. When reentering the DSM

function, DeMAID/GA changes the color of the couplings to represent their
strength: extremely weak - red; very weak - pink; weak - yellow; nominal -

green; strong - light blue; very strong - blue; and extremely strong - black. The
recommendations such as:

Suggest removing module CSYSANL because all interfaces are extremely
weak"

from the "conceptual_design" problem are displayed on the console window
and are saved in the "cstr.log" file.

39

PROGRAM FUNCTIONS

4.6.6 Cost and Time

Input file - disp.out
Output file - none
Rule file - candt.bin

Log file - candt.log

Cost and Time provides the user with the total amounts of time and/or cost for
each circuit, as well as for the entire project. The information in figure 22 is
saved in the "candt.log" file.

Time required for circuit 5 is 1630

Time required for 2 iterations between
Time required for 6 iterations between
Time required for 8 Iterations between
Time required for 7 iterations between

modules 8 and 9 is 180
modules 7 and 8 is 540
modules 6 and 7 is 560
modules 5 and 6 is 350

Cost required for circuit 5 is 1130

Cost required for 7 iterations between modules 5 and 6 is 490
Cost required for 8 iterations between modules 6 and 7 is 400
Cost required for 6 Iterations between modules 7 and 8 is 180
Cost required for 2 Iterations between modules 8 and 9 is 60

Total time required is 1910

Total cost required is 1330

Figure 22. Time and cost information from the Cost and Time function.

A relation exists between the coupling strengths (section 3.2.2) and the number
of iterations for a particular feedback coupling (section 3.2.3). As in the GA, the
time and cost of each module related through a feedback is summed; then the
sum is multiplied by an iterative factor that has been determined from the
coupling strength (section 4.5.1). The user can modify the default relation with
the override list (section 3.2.3). If no coupling strengths exist, an iterative factor
of 1 is used.

40

PROGRAM FUNCTIONS

Table 1 displays the feedback couplings for the "conceptual_design" DSM
shown in figure 5; the table displays the number of iterations for the feedback

coupling and the total time and cost to converge each feedback. The totals for
this DSM are 21,340 units for time and 19,640 units for cost.

Table 1. Time and Cost for the Unordered Design Process.

To Module From Module Iterations Time Cost
1 2 8 560 400
1 6 4 600 840
2 8 8 1680 1680
3 6 2 160 320
4 9 7 1260 1260
5 18 6 2580 2460
6 11 8 1760 1120
7 8 6 540 180
8 9 2 140 100
8 10 8 720 720
8 15 4 960 960
8 20 7 2940 2520

10 17 8 1760 2080
11 12 5 350 250
12 13 3 180 180
13 14 6 300 420
14 15 8 400 560
14 20 4 920 760
15 16 6 300 420
16 17 7 350 490
16 21 8 1600 1280
17 18 8 560 400

18 19 6 540 180
19 20 2 180 60

Totals 21,340 19,640

41

PROGRAM FUNCTIONS

Table 2 displays the same information for the reordered "conceptual_design"
DSM shown in figure 13.

Table 2. Time and Cost for the Ordered Design Process.

To Module From Module Iterations Time Cost
1 11 5 1700 1600
5 6 7 350 490
6 7 8 560 400
7 8 6 540 180
8 9 2 180 400

11 21 3 960 1020
14 17 2 28O 2OO

Totals 4,570 3,950

The number of processes contained in the iterative loops has been reduced by
reordering the sequence with the GA. This reordering also reduced the total
cost from 19,640 to 3,950 units and the total time from 21,340 to 4,570 units.
Thus, the total cost and time in a design process is very much dependent on the
ordering the sequence of the design processes.

42

= q

PROGRAM FUNCTIONS

4.6.7 User Function

Input file - user-defined filename

Output file - user-defined filename
Rule file -user-define filename

Log file - user-defined filename

User Function allows the user to define a set of rules to be called by

DeMAID/GA. A window allows the user to type in the name of the file containing

the rules. Typically, the input file should be the "disp.out" file. The output file

and log file are optional and can be named by the user in the rule file.

A flowchart of the User Function is shown in figure 23. The menu selection is in

the rectangular block. The files are all named by the user.

ram,--

User Function

Figure 23. Flowchart of the User Function option.

43

PROGRAM FUNCTIONS

4.7 INTERFACE MENU

The Interface function allows the user to save a file that can be input to another
program. These programs include: Microsoft EXCEL © (section 4.7.1); Microsoft

Project © (section 4.7.2); and Steward's DSS program © (section 4.7.3).

A flowchart of the Interface function is shown in figure 24. The menu selections

are in the rectangular blocks. The user defines the output file for each selection.

In each section, an example is given of the way a module is written in the

respective output files. The examples are taken from the WlANAL module in the
"conceptual_design" problem shown in figure 13. WlANAL is the ninth module

in the DSM. It requires 40 units of time. The output from WlANAL is an input to

modules 8 (extremely weak), 14 (very strong), and 21 (weak). WlANAL receives

input from modules 2 and 8.

Rules Rules

eprdeht.bin pert.bin dss.bln

Input

disp.out

Figure 24.

Spreadsheet PERT DSS

Output Output

user defined user defined

Flowchart of the Interface function selections.

© Microsoft Excel copyrighted by Microsoft Corporation
© Microsoft Project copyrighted by Microsoft Corporation
© DSS program copyrighted by Blitzkrieg Software

44

PROGRAM FUNCTIONS

4.7.1 Spreadsheet
Input file - disp.out

Output file - user-defined filename

Rule file - sprdsht.bin

Log file - none

Spreadsheet allows the user to create a tab-delimited file for input into an

EXCEL spreadsheet. The module names are written on the diagonal; and If

available, the coupling strengths are written in the off-diagonal elements,
otherwise, an "X" is placed in the coupling slot. A sample module from the

spreadsheet output file is

ew WIANAL vs w

where the name WIANAL, the ninth module in the list, would appear in row 9

column 9 of the spreadsheet and the coupling strengths would be tabbed to

columns 2, 14, and 21. The "ew" coupling is a feedback coupling and appears
in the lower triangle of the spreadsheet. The time is not output to the

spreadsheet at this time. The couplings representing input from other modules

would appear in column 9, rows 2 and 8.

4.7.2 PERT

Input file - disp.out

Output file - user-defined filename
Rule file - pert.bin

Log file - none

PERT allows the user to create a comma-delimited file for input into Microsoft

Project. The times are assumed to be in hours. A sample module from the

PERT output file is

9,WIANAL,40h,,,"2,8",

where WIANAL is the ninth module in the list, requires 40 hours (hours is the

default for the PERT output) to complete execution, and requires modules 2 and

8 to finish executing before it can begin. If there is more than one predecessor
module, the modules in the predecessor field are enclosed in quotes. No

coupling strengths are written to this file. The data from the feedback coupling

is assumed to be available, thus the feedback coupling is not written as a

predecessor module in the output file.

45

PROGRAM FUNCTIONS

4.8 HELP MENU

Input file - none

Output file - none
Rule file - none

Log file - none

The Help function provides the user with on-line documentation about each of
the major functions.

47

SAMPLE PROBLEMS

5. SAMPLE PROBLEMS

The following two sample problems are used throughout the text to describe the

workings of the program.

5.1 "conceptual_design" Problem

This problem contains 22 processes (modules) found in a typical conceptual

design activity. This input data are derived from the process flowchart shown in

figure 25. The main problems with this type of chart are that it is difficult to

determine where to begin the design activity and which processes are iterative.

I [Rigid
Aero Aero _ Aero
Model Analysis j [Character

Flex. Dynamic
Press. & Aero & Modal Model
Deflect Character Character

Geometry Struct. Struct. Aero
Develop Model Analysis Mode Elastic

Control
Initial Struct. Aero Analysis
Data Weight Elastic

Charact..__._er _,

RiDi!taSae Weight Vehicle Stability

Inertia Perform. (Qualities 1

---r--

(.. j.L_ Mission Final 1Perform. Data

Figure 25. Process flowchart of analyses in a conceptual design activity.

The following two subsections contain the input data for each module (section

5.1.1) and data to quantify the coupling strengths (section 5.1.2). The time and

cost of each module and the coupling strengths were arbitrarily selected for test

purposes and not based on a real problem.

48

SAMPLE PROBLEMS

5.1.1 Module Input

(title conceptual_design)

(maximum 22)
(cost)

(module 1 GEOMDEV 10 50

(module 2 INITDAT 20 40

(module 3 RVSEDAT 30 30

(module 4 AEROMDL 40 20

(module 5 STRMODL 50 10
(module 6 AEROANL 40 20

(module 7 PRESDEF 30 30

(module 8 STRANAL 20 40

(module 9 STRCTWT 10 50

(module 10 WlANAL 20 40

(module 11 RAEROCH 30 30
(module 12 FAEROCH 40 20

(module 13 STRMODE 50 10

(module 14 VEHPERF 40 20

(module 15 MISPERF 30 30

(module 16 STDMOCH 20 40

(module 17 STRDYNA 10 50
(module 18 AROSRVO 20 40

(module 19 DYNMODL 30 30

(module 20 CSYSANL 40 20

(module 21 HANDQUL 50 10
(module 22 FINLDAT 40 20

G1 uk 12)

12 uk R3)
R3 uk M15)

A4 uk G1)

$5 uk G1)

A6 uk A4 P7)

P7 uk A6 $8)

$8 uk P7 $9 $5)

$9 ukS8Wl0)

Wl0 uk G1 $9)
R11 uk A6)

F12 uk P7)

$13 uk $8)

V14 uk Wl0 Rll F12 A18 H21)
M15 uk V14)

$16 uk $17)

$17 ukG1 Rll F12 $13 Wl0 C20)
A18 uk $17)
D19 uk G1 $16)

C20 uk D19 $17)

H21 uk C20)

goal uk M 15)

49

SAMPLE PROBLEMS

5.1.2 Coupling Strength Data
(strength uk es G1 12)
(strength uk n 12 R3)
(strength uk vw R3 M 15)
(strength uk es A4 G 1)
(strength uk ew $5 G 1)
(strength uk es A6 A4)
(strength uk vs A6 P7)
(strength uk s P7 A6)

(strength uk es P7 $8)
(strength uk vs $8 P7)
(strength uk s $8 $9)
(strength uk w S8 $5)
(strength uk es S9 $8)
(strength uk ew $9 Wl0)
(strength uk w Wl0 G1)
(strength uk es Wl0 $9)
(strength uk s R11 A6)
(strength uk es F12 P7)
(strength uk s $13 $8)
(strength uk w V14 Wl0)
(strength uk es V14 R11)
(strength uk ew V14 F12)
(strength uk vs V14 A18)
(strength uk vw V14 H21)
(strength uk s M15 V14)
(strength uk es $16 $17)
(strength uk s $17 G1)
(strength uk w $17 R11)
(strength uk es S17 F12)
(strength uk ew $17 $13)
(strength uk vs $17 Wl0)
(strength uk ew $17 C20)
(strength uk s A18 $17)
(strength uk w D19 G1)
(strength uk es D19 $16)
(strength uk es C20 D19)
(strength uk s C20 $17)
(strength uk vs H21 C20)
(strength uk n goal M15)

50

SAMPLE PROBLEMS

5.2 "test" Problem

This problem contains 45 processes (modules). This problem is the original test

case for DeMAID and provides an excellent example for decomposing a

problem into a multilevel hierarchy. The following subsection contains the input

data for each module section 5.2.1). Field 4 of each module distinguishes

between a constraint (1), a behavior variable (2), a design variable (3), and the
objective function (4).

5.2.1 Module Input
(title test)
(maximum 45)
(module 1 TASKC10
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module
(module

1 0 G010 uk DV15 DV19 DV20)

2 TASKD07 3 0 DV07 uk G014 G015)
3 TASKD17 3 0 DV17 uk G006 G007 G008)
4 TASKD23 3 0 DV23 uk OB01)
5 TASKD20 3 0 DV20 uk G009 G010)
6 TASKD15 3 0 DV15 uk G016 G017)
7 TASKB03 2 0 BV03 uk DV01 DV02 DV03)
8 TASKC14 1 0 G014 uk DV06 DV07 DV08 DV23)
9 TASKC07 1 0 G007 uk DV12 DV13 DV16 DV17 DV18)

10 TASKC15 1 0 G015 uk DV06 DV07 DV08 DV23)
11 TASKD21 3 0 DV21 uk G001 G002)
12 TASKC04 1 0 G004 uk DV06 DVl0 DV11 BV04)
13 TASKC17 1 0 G017 uk DV23 BV01)
14 TASKC06 1 0 G006 uk DV12 DV13 DV16 DV17 DV18)
15 TASKC03 1 0 G003 uk DV01 DV02 DV03 DV04 DV05)
16 TASKC13 1 0 G013 uk DV23 BV03)
1-7TASKB04 2 0 BV04 uk DV09 DV10 DV11)
18 TASKD04 3 0 DV04 uk G003)
19 TASKD11 3 0 DV11 uk G004 G005)
20 TASKD02 3 0 DV02 uk G011 G012 G013)
21 TASKC01 1 0 G001 uk DV16 DV17 BV02)
22 TASKC02 1 0 GO02 uk DV18 BV02)
23 TASKC16 1 0 G016 uk DV23 BV01)
24 TASKD13 3 0 DV13 uk G016 G017)
25 TASKD05 3 0 DV05 uk G003)
26 TASKD14 3 0 DV14 uk G016 G017)
27 TASKC08 1 0 G008 uk DV12 DV13 DV16 DV17 DV18)
28 TASKB02 2 0 BV02 uk DV21 DV22)
29 TASKD10 3 0 DVl0 uk G004 G005)
30 TASKC09 1 0 G009 uk DV14 DV19 DV20)
31 TASKC11 1 0 G011 uk DV01 DV02 DV03)
32 TASKD16 3 0 DV16 uk G006 G007 G008)
33 TASKD06 3 0 DV06 uk G014 G015)
34 TASKD19 3 0 DV19 uk G009 G010)
35 TASKD03 3 0 DV03 uk G011 G012 G013)
36 TASKD09 3 0 DV09 uk G004 G005)
37 TASKD12 3 0 DV12 uk G016 G017)
38 TASKC12 1 0 G012 uk DV23 BV03)

51

SAMPLE PROBLEMS

(module 39 TASKD22 3 0 DV22 uk G001 G002)
(module 40 TASKD18 3 0 DV18 uk G006 G007 G008)
(module 41 TASKD01 3 0 DV01 uk G011 G012 G013)
(module 42 TASKD08 3 0 DV08 uk G014 G015)
(module 43 TASKF01 4 00B01 uk DV23)
(module 44 TASKB01 2 0 BV01 uk DV12 DV13 DV14 DV15)
(module 45 TASKC05 1 0 G005 uk DV07 DV08 DV10 DV11 BV04)

52

REFERENCES

REFERENCES

. Rogers, J. L.: A Knowledge -Based Tool for Multilevel Decomposition of a
Complex Design Problem. NASA TP-2903, 1989.

. Rogers, J. L.: DeMAID. A Design Manager's Aid for Intelligent
Decomposition User's Guide. NASA TM-101575, 1989.

. Steward, D. V.: Systems Analysis and Management: Structure,
Strategy and Design. Petrocelli Books Inc, c. 1981.

. Giarratano J. and Riley, G.: Expert Systems Principles and Programming,
PWS - Kent Publishing Company, Boston, 1989.

. Bloebaum, C. L.: An Intelligent Decomposition Approach for Coupled
Engineering Systems. Proceedings of the Fourth AIAA/USAF/NASA/OAI

Symposium on Multidisciplinary Analysis and Optimization, Cleveland,
OH, September 1992.

. Rogers, J. L. and Bloebaum, C. L.: Ordering Design Tasks Based on
Coupling Strengths. AIAA Paper No. 94-4326, 1994.

° Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Publishing Co. New York, 1989.

° Syswerda, G.: Schedule Optimization Using Genetic Algorithms.
Handbook of Genetic Algorithms, Van Nostran Reinhold, New York,
1990.

. McCulley, C. M.; and Bloebaum, C. L.: A Genetic Tool for Optima/
Sequencing in Complex Engineering Systems. Structural Optimization.
1996.

53

REPORT DOCUMENTATION PAGE F
Form Approved

OMB No 0704-0188

..... _--_"n O1 irl_OfrrlillO_ is |sIif'fiD|ll_ |o |ww(&_i | bout pet ;,w_.,_.*,_, intruding me lime for revm_ tn_r .._--

Pu0kC t_l_flg i0_t@eft ,or ir_._._ Irl(;I ¢OfflPtlMlfl9 arid ,llvteWl_ the COIM,ChO_ O| It'l|D0"rrk_llOrl. Sel_l COn_YI4/llll rM-.._._-_.'_.'_, _'_'_'rB' _arcnm9 exlslmg dala sources,

gsmerm9 and remms,e_n9 me as'_'_'u'_'_s_s. for ,e0_n9 I_e buroen . to W,tshmgton t'teaOquanerl Sewces. D.eaor ae;,._orT_;_r,,,.B.,_,..u-"mQrte.,reale or _ ott'_ ,IDec_ 04th,_

April 1996 Technical Memorandum
.l

4. TITLE AND SUBTITLE 5. FUNOING NUMBERS

DeMAID/GA User's Guide - Design Manager's Aid for 5o5-_o-11-ol

Intelligent Decomposition with a Genetic Algorithm

6. AUTHOR(S)

James L. Rogers

7. PERFORMING ORGANIZATION NAME(S) AND'ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORII_G I MONITORING

AGENCY REPORT NUMBER

NASA TM-110241

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT

Unclassified- Unlimited

Subject Category 05

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many companies are looking for new tools and techniques to aid a design manager in making
decisions that can reduce the time and cost of a design cycle. One tool that is available to aid

in this decision making process is the Design Manager's Aid for Intelligent Decomposition
(DeMAID). Since the initial release of DeMAID in 1989, numerous enhancements have been

added to aid the design manager in saving both cost and time in a design cycle. The key
enhancement is a genetic algorithm (GA) and the enhanced version is called DeMAID/GA.

The GA orders the sequence of design processes to minimize the cost and time to converge
to a solution. These enhancements as well as the existing features of the original version of
DeMAID are described. Two sample problems are used to show how these enhancements

can be applied to improve the design cycle. This report serves as a user's guide for
DeMAID/GA.

1,I. SUBJECT TERMS 1S. NUMBER OF PAGES

Design, Scheduling, Genetic Algorithm, Sensitivities, 54
Knowledge-Based System, Coupling Strengths, Decomposition, _. _ICE Coo_

Concurrent Engineering
117. SECURITY CLASSIFICATION 11). SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280.5500

A04

lg. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

I II

S_ndard Form 291) (l_v. 2-19)

